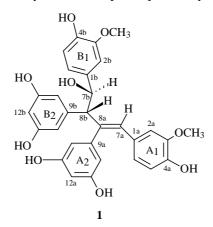
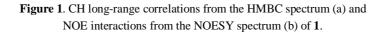
Gnetuhainin P, a New Isorhapontigenin Dimer from the Lianas of *Gnetum hainanense*

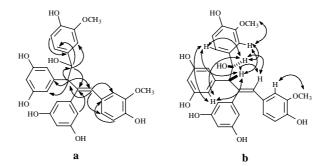

Ying Hong WANG, Kai Sheng HUANG, Mao LIN*

Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100050

Abstract: Gnetuhainin P, a new isorhapontigenin dimer, was isolated from the Lianas of *Gnetum* hainanense C. Y. Cheng. Its structure was established on the basis of spectroscopic evidence, especially 2D NMR techniques.

Keywords: Gnetuhainin P, Gnetum hainanense, Gnetaceae, Isorhapontigenin, dimer.


Continuous investigation on oligostilbenes from the lianas of *Gnetum hainanense* resulted in the isolation of a new rhapontigenin dimer, Gnetuhainin P (1), in addition to the dimers of resveratrol and oxyresveratrol reported previously¹.



Gnetuhainin P (1) was obtained as a yellowish amorphous powder, $[\alpha]^{25}_{D}$ +6.6 (*c* 0.092, MeOH). The high resolution FABMS *m*/*z* 533.1866 [M+H]⁺ gave a molecular formula of C₃₀H₂₈O₉ (C₃₀H₂₉O₉ requires 533.1812), which corresponds to a isorhapontigenin dimer. The ¹H NMR spectrum presented two sets of ABX system signals for rings A₁ and B₁; two sets of AB₂ system signals for ring A₂ and B₂, two coupled doublets for two methine protons, a singlet for an olefinic proton and two singlets for the methyloxy groups. The HMBC spectrum (**Figure 1**, **a**) showed significant CH long-range correlations between H-7a/C-2a, 6a, 8b, H-10(14)a/C-8a,

Ying Hong Wang et al.

H-8b/C-7a, 8a, 10(14)b, H-7b/C-8a, 2b, 6b, which suggested that compound **1** was polymerized by two isorhapontigenin units through a linkage between C-8a and C-8b. The connectivity was different from that of gnetifolin O^2 . In the NOESY spectrum (**Figure 1**, **b**), the NOEs between H-7a/H-8b, H-7a/H-7b indicated a *cis* orientation of ring A₁ and A₂, and NOEs between H-8b/H-2b, 6b, H-7b/H-10(14)b suggested that H-7b and H-8b were in *trans* orientation, Thus the stereochemistry was determined to be as shown in **1**.

Table 1. ¹H and ¹³C NMR spectral data for compound 1 (δ in ppm, J in Hz).^a

Position	¹ H	¹³ C	Position	^{1}H	¹³ C
1a		130.3	1b		136.3
2a	6.45 d (2.1)	112.6	2b	6.84 d (2.1)	111.7
3a		147.4	3b		147.4
4a		146.0	4b		146.0
5a	6.62 d (8.4)	115.0	5b	6.61 d (8.4)	114.8
6a	6.65 dd (8.4, 2.1)	123.7	6b	6.74 dd (8.4, 2.1)	120.6
7a	6.77 s	127.9	7b	5.05 d (9.9)	75.7
8a		141.6	8b	3.70 d (9.9)	64.7
9a		144.9	9b		143.8
10(14)a	6.08 d (2.1)	108.7	10(14)b	6.06 d (2.1)	108.4
11(13)a		159.4	11(13)b		158.4
12a	6.24 t (2.1)	101.8	12b	6.03 t (2.1)	101.3
OMe-3a	3.46 s	55.3	OMe-3b	3.70 s	56.0

^a Measured in CD₃COCD₃ at 300 MHz for ¹H NMR, 75 MHz for ¹³C NMR, respectively.

References

1. K. S. Huang, Y. H. Wang, R. L. Li and M. Lin, J. Nat. Prod., 2000, 63, 86.

2. H. Chen and M. Lin, Chin. Chem. Lett. 1999, 10, 579.

Received 17 May 2000